
Smooth LASSO for Classification

Li-Jen Chien
Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology
Taipei, 106 Taiwan

D8815002@mail.ntust.edu.tw

Zhi-Peng Kao
Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology
Taipei, 106 Taiwan

M9515040@mail.ntust.edu.tw

Yuh-Jye Lee
Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology
Taipei, 106 Taiwan

yuh-jye@mail.ntust.edu.tw

Abstract—The sparse model character of 1-norm penalty
term of Least Absolute Shrinkage and Selection Operator
(LASSO) can be applied to automatic feature selection. Since
1-norm SVM is also designed with 1-norm (LASSO) penalty
term, this study labels it as LASSO for classification. This
paper introduces the smooth technique into 1-norm SVM
and calls it smooth LASSO for classification (SLASSO) to
provide simultaneous classification and feature selection. In
the experiments, we compare SLASSO with other approaches
of “wrapper” and “filter” models for feature selection. Results
showed that SLASSO has slightly better accuracy than other
approaches with the desirable ability of feature suppression.

Keywords-classification; feature selection; least absolute
shrinkage and selection operator; smooth technique; support
vector machine;

I. INTRODUCTION

This paper focuses on the feature selection problem in
the support vector machine for binary classification. Feature
suppression is very important in the development of new
techniques in bioinformatics that utilize gene microarrays
[18] for prognostic classification, drug discovery, and other
tasks. Many studies use 2-norm SVM for solving the
classification problems. However, 2-norm SVM classifier
can not automatically select input features. 1-norm SVM
can automatically discard irrelevant features by estimating
corresponding variables by zero. Thus, 1-norm SVM is
both a wrapper method [13] and an automatic relevance
determination (ARD) model [22]. When there are many
noise features in training set, 1-norm SVM has significant
advantages over 2-norm SVM. Methods for simultaneous
classification and feature selection have grown popularly. In
the past few years, 1-norm penalty term for feature selection
has attracted a lot of attention. Tibshirani [23] proposed
LASSO as a colorful name via using 1-norm penalty for
feature selection in the regression problem. Osborne et al.
[20] made compact descent and homotopy method to com-
putational problems associated with implementing LASSO.
Zhu et al. [26], Mangasarian [16] and Zou [27] used 1-norm
SVM to attain the goal of automatic feature selection in the

classification problem. In the above studies, 1-norm penalty
is able to cause most coefficients to be exactly zero and
generate sparse solutions especially in the high dimensional
feature space.

In fact, LASSO adds 1-norm regularization into the
objective function to control the model complexity. The
LASSO model typically has many zero elements and thus
shares characteristics of both shrinkage variable and feature
selection for regression and classification problems. LASSO
is piece-wise linear and not differential. Researchers can
transform LASSO into a linear inequalities problem, but the
number of these inequalities can be large and the number
of variables is doubled. The goal of LASSO is to handle
the problems that the number of features is larger than
the number of data points and attains automatic feature
selection. Consequently, we would not like to increase the
number of variables. For these reasons, this study proposes
smooth LASSO for classification (SLASSO).

The basic idea of SLASSO is to convert 1-norm SVM
[26] problem into a non-smooth unconstrained minimization
problem, and then use standard smoothing techniques of
mathematical programming [6], [7], [15] to smooth this
unconstrained minimization problem. The Newton-Armijo
Algorithm can be used for solving SLASSO since the prob-
lem is infinitely differentiable. Experiments test SLASSO
on some benchmark datasets. Results show that SLASSO
has slightly better accuracy than other approaches with the
desirable ability of feature suppression.

The following briefly describe some notations used in
this paper. For notational convenience, the training dataset
is rearranged as an 𝑚 × 𝑛 matrix 𝐴, and 𝐴𝑖 = (𝑥𝑖)′

corresponds to the 𝑖th row of 𝐴. Column vectors of ones
and zeros are denoted by bold 1 and 0 respectively. For
a vector 𝑥 ∈ 𝑅𝑛, the plus function 𝑥+ is defined as
(𝑥+)𝑖 = max {0, 𝑥𝑖}, 𝑖 = 1, . . . , 𝑛. For a vector 𝑣 ∈ 𝑅𝑚,
the 𝑑𝑖𝑎𝑔(𝑣) is an 𝑚×𝑚 diagonal matrix with vector 𝑣 along
its diagonal. This operator on 𝑣 is available in MATLAB
[17]. For 𝑥 ∈ 𝑅𝑛 and 1 ≤ 𝑝 < ∞, the 𝑝-norm will be
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denoted as ∥𝑥∥𝑝 =

(∑𝑛
𝑖=1 ∣𝑥𝑖∣𝑝

) 1
𝑝

. If 𝑓 is a real valued

function defined on the 𝑛-dimensional real space 𝑅𝑛, the
gradient of 𝑓 at 𝑥 is denoted by ∇𝑓(𝑥) which is a row
vector in 𝑅𝑛 and the 𝑛×𝑛 Hessian matrix of second partial
derivatives of 𝑓 at 𝑥 is denoted by ∇2𝑓(𝑥).

The rest of this paper is organized as follows. Section
II provides a brief introduction of 1-norm SVM (LASSO
for classification). Section III presents the formulation of
the smooth LASSO. Section IV describes Newton-Armijo
algorithm and implementation of smooth LASSO. Section
V presents the numerical results. Section VI concludes the
study.

II. LASSO AND 1-NORM SUPPORT VECTOR MACHINE

Regularization term is usually added in objective function
for the purpose of coefficient shrinkage. 1-norm and 2-norm
regularization term are mostly used. Ridge regression uses
2-norm regularization term as follows:

𝛽𝑟𝑖𝑑𝑔𝑒 = argmin ∣∣𝑌 − 𝛽𝑋∣∣22 + 𝜆∣∣𝛽∣∣22, (1)

𝜆 ≥ 0 is the shrinkage parameter. Unlike ridge regression,
LASSO uses 1-norm regularization term as follows:

𝛽𝐿𝐴𝑆𝑆𝑂 = argmin ∣∣𝑌 − 𝛽𝑋∣∣22 + 𝜆∣∣𝛽∣∣1. (2)

Many studies [22], [23] indicated that 1-norm regularization
is better than 2-norm regularization term in coefficient
shrinkage. The problem (3) is 1-norm SVM formulation
[16], [26] and it can also generate a very sparse model used
in feature selection.

min
(𝑤,𝑏,𝜉)∈𝑅(𝑛+1+𝑚)

∥𝑤∥1 + 𝐶∥𝜉∥1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝐷(𝐴𝑤 + 1𝑏) + 𝜉 ≥ 1

𝜉 ≥ 0.

(3)

The main advantages of 1-norm SVM are very effective
in reducing input space features for linear kernels and the
number of kernel functions for nonlinear SVM [16]. Unlike
1-norm SVM is used for classification problems, LASSO is
originally used for regression problems. However, LASSO
is a colorful name for feature selection method with 1-norm
penalty term. No matter how the purposes are different, this
study treats LASSO as the property of the methods with
an 1-norm penalty term. This study names 1-norm SVM
as LASSO for classification through the following sections.
Section III combines the strategy of SSVMs [7], [15] and
LASSO for classification to propose smooth LASSO for
classification.

III. SLASSO

Following the SSVM methodology [15] of SSVM1 [7]
and SSVM2 [15] , the absolute 𝑏 is appended to the objective
function of problem (3). Thus, the original ∥𝑤∥1 in the

objective function of problem (3) is replaced by ∥(𝑤, 𝑏)∥1
as follows:

min
(𝑤,𝑏,𝜉)∈𝑅(𝑛+1+𝑚)

∥𝑤∥1 + ∣𝑏∣+ 𝐶∥𝜉∥1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝐷(𝐴𝑤 + 1𝑏) + 𝜉 ≥ 1

𝜉 ≥ 0.

(4)

Then, problem (4) can be converted to an explicit linear
program as follows:

min
(𝑤,𝜉)∈𝑅(𝑛+1+𝑚)

1
′
((𝑤)+ + (−𝑤)+) + 𝐶1′

𝜉

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝐷𝐴((𝑤)+ − (−𝑤)+) + 𝜉 ≥ 1

𝜉 ≥ 0,

(5)

where the following substitution for 𝑤 and 𝐴 have been
made:

𝑤 =

[
𝑤

𝑏

]
, 𝐴 =

[
𝐴 1

]
.

The slack variable 𝜉 in the objective function of problem (5)
is replaced by (1−𝐷𝐴((𝑤)+−(−𝑤)+))+. Hence, problem
(5) is converted into an unconstrained optimization problem
as follows:

min
𝑤∈𝑅𝑛+1

1𝑇 ((𝑤)+ + (−𝑤)+)+
𝐶1𝑇 (1−𝐷𝐴((𝑤)+ − (−𝑤)+))+.

(6)

Obviously, the objective function in problem (6) is not twice
differentiable so that Newton method can not be applied
to solve the problem. Therefore, SLASSO on classification
employs a smoothing function [5] to replace the original plus
function. In SSVM, the plus function 𝑥+ is approximated by
a smooth 𝑝-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑝(𝑥, 𝛼) = 𝑥+ 1

𝛼 log(1 + 𝑒−𝛼𝑥), 𝛼 >
0. Note that if the value of 𝛼 increases, the 𝑝(𝑥, 𝛼) will
approximate the plus function more accurately. Next, the
𝑝(𝑥, 𝛼) is taken into problem (6) to replace the plus function
as following:

min
𝑤∈𝑅𝑛+1

1𝑇 (𝑝(𝑤,𝛼) + 𝑝(−𝑤,𝛼))+
𝐶1𝑇 𝑝(1−𝐷𝐴(𝑝(𝑤,𝛼)− 𝑝(−𝑤,𝛼)), 𝛼).

(7)

Thus, the objective function in problem (7) is twice dif-
ferentiable and can be solved using a fast Newton method.
However, Newton method might lead to the oscillation phe-
nomenon. To avoid the phenomenon, the Armijo stepsize is
employed to make the solution convergent globally. Section
IV describes a Newton-Armijo algorithm for solving the
smooth problem (7).

IV. NEWTON-ARMIJO ALGORITHM FOR SLASSO ON

CLASSIFICATION

Taking the advantage of the twice differentiability of the
objective function of problem (7), this section prescribe a
Newton algorithm with an Armijo stepsize [4] that makes
the algorithm globally convergent. Before introducing the
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Newton-Armijo Algorithm of SLASSO for classification,
we denote Φ𝛼(𝑤) to represent the objective function (7)
for convenience. The Newton-Armijo Algorithm for solving
problem (7) is as follows:

Newton-Armijo Algorithm of SLASSO for classification:
Set the parameter values 𝐶 and 𝛿 while 𝐶 and 𝛿 are set by a
tuning procedure. Start with any (𝑤) ∈ 𝑅𝑛+1. Having (𝑤𝑖),
stop if the gradient of the objective function of (7) is zero,
that is ∇Φ𝛼(𝑤

𝑖) = 0. Else compute (𝑤𝑖+1) as follows:

(i) Newton Direction: Determine direction 𝑑𝑖 ∈ 𝑅𝑛+1

by setting equal to zero the linearization of ∇Φ𝛼(𝑤)
around (𝑤𝑖) which gives 𝑛+1 linear equations in 𝑛+1
variables:

(∇2Φ𝛼(𝑤
𝑖) + 𝛿𝐼)𝑑𝑖 = −∇Φ𝛼(𝑤

𝑖)𝑇 . (8)

(ii) Armijo Stepsize [2]: Choose a stepsize 𝜆𝑖 ∈ 𝑅 such
that:

𝑤𝑖+1 = 𝑤𝑖 + 𝜆𝑖𝑑
𝑖 (9)

where 𝜆𝑖 = max{1, 12 , 14 , . . .} such that :

Φ𝛼(𝑤
𝑖)−Φ𝛼((𝑤

𝑖)+𝜆𝑖𝑑
𝑖) ≥ −𝜂𝜆𝑖∇Φ𝛼(𝑤

𝑖)𝑑𝑖 (10)

where 𝜂 ∈ (0, 12 ).

Note that selecting a good initial solution for the Newton-
Armijo algorithm can speed up the time for finding the
optimal unique solution. Furthermore, the proposed smooth-
ing algorithm is globally convergent to a unique solution.
Section V describes the implementation details.
We describe how to implement the Newton-Armijo algo-
rithm of SLASSO for classification using MATLAB code.
The most important ingredients of the Newton-Armijo al-
gorithm are the gradient and Hessian matrix of Φ𝛼(𝑤) in
(7). Then we apply the chain rule from calculus and some
elementary matrix algebra to get the following formula:

∇Φ𝛼(𝜔̃) = 𝑝
′
(𝜔̃, 𝛼)− 𝑝′(−𝜔̃, 𝛼)− 𝐶𝑑𝑖𝑎𝑔(𝑝′(𝜔̃, 𝛼)+
𝑝

′
(−𝜔̃, 𝛼))𝐴𝑇𝐷𝑝

′
(𝑠, 𝛼)

(11)
and

∇2Φ𝛼(𝜔̃) = 𝑑𝑖𝑎𝑔(𝑝
′′
(𝜔̃, 𝛼) + 𝑝

′′
(−𝜔̃, 𝛼))−

𝐶𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝑝
′′
(𝜔̃, 𝛼)−

𝑝
′′
(−𝜔̃, 𝛼))𝐴𝑇𝐷𝑝

′
(𝑠, 𝛼))+

𝐶𝑑𝑖𝑎𝑔(𝑝
′
(𝜔̃, 𝛼)+

𝑝
′
(−𝜔̃, 𝛼))𝐴𝑇 𝑑𝑖𝑎𝑔(𝑝

′′
(𝑠, 𝛼))𝐴𝑑𝑖𝑎𝑔(𝑝

′
(𝜔̃, 𝛼)+

𝑝
′
(−𝜔̃, 𝛼))

(12)
where

𝑠 = 1−𝐷𝐴(𝑝(𝑤,𝛼)− 𝑝(−𝑤,𝛼)). (13)

For data matrix 𝐴 ∈ 𝑅𝑚×(𝑛+1), this study provides two
different ways to calculate the direction 𝑑𝑖 in the Newton
iteration (9). For this purpose define:

𝑈 := 𝛿𝐼 + 𝑑𝑖𝑎𝑔(𝑝
′′
(𝜔̃, 𝛼) + 𝑝

′′
(−𝜔̃, 𝛼))

−𝐶𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝑝′′(𝜔̃, 𝛼)− 𝑝′′(−𝜔̃, 𝛼))𝐴𝑇𝐷𝑝
′
(𝑠, 𝛼)),

𝐸 := 𝑑𝑖𝑎𝑔(𝑝
′
(𝜔̃, 𝛼) + 𝑝

′
(−𝜔̃, 𝛼))𝐴𝑇 𝑠𝑞𝑟𝑡(𝐶𝑑𝑖𝑎𝑔(𝑝

′′
(𝑠, 𝛼))).
(14)

Then, it follows from (14) that:

∇2Φ𝛼(𝑤
𝑖) + 𝛿𝐼 = 𝐸𝐸𝑇 + 𝑈,

which is the matrix whose inverse is needed in the Newton
iteration (8).

We use (𝐸𝐸𝑇 + 𝑈)−1 directly for the case 𝑚≫ 𝑛. For
𝑚 ≪ 𝑛 case, we apply the Sherman-Morrison-Woodbury
identity [10] as follows:

(𝐸𝐸𝑇 + 𝑈)−1 = 𝑈−1 − 𝑈−1𝐸(𝐼 + 𝐸𝑇𝑈−1𝐸)−1𝐸𝑇𝑈−1.

Note that an 𝑚 ×𝑚 linear system of equations instead of
an (𝑛+1)× (𝑛+1) makes the proposed algorithm very fast
when 𝑚≪ 𝑛 but m is relatively small and the inverse 𝑈−1

of 𝑈 is trivial to calculate since 𝑈 is a diagonal matrix.

V. EXPERIMENTAL TESTS

A. Data Presentation and Experimental Setup

The computational configuration was a P4 2.8GHz com-
puter with 1GB of memory and Windows XP operating
system, which Matlab 7.0 is installed. The range of tuning
parameters 𝐶 and 𝛿 sets [10−2, 104] and [10−3, 103] respec-
tively. Statistics and descriptions of datasets are as follows:

1) Acute Leukemia Dataset: In the acute leukemia dataset
[11], there are 25 acute myeloid leukemia (AML) and
47 acute lymphoblastic leukemia (ALL) samples which
are taken from 72 patients. Each sample has 7129 genes
obtained from microarray experiments. In ALL class, the 47
samples are further grouped into 38 B-lineage cell ALL (B-
Cell ALL) and 9 T-lineage cell ALL (T-Cell ALL) samples.
The acute leukemia dataset contains a training set and an
independent test set. The training set has 38 samples which
include 11 AML and 27 ALL samples (19 B-Cell, 8 T-
Cell). There are 34 samples in the test set which consist
of 14 AML and 20 ALL samples (19 B-Cell, 1 T-Cell). The
summary of this data set is shown in Table I. Since the
acute leukemia data set contains three categories, this study
converts this trinary classification problem into two binary
classification problems in the experiments. One is used to
distinguish AML form ALL and another is used to classify
B-Cell ALL and T-Cell ALL. By verifying parameters of
stratified 5-fold cross validation on training set, we build
up the model for whole training set and directly report the
number of genes and testing accuracy of testing set in Table
III.
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Table I
Summary of the acute leukemia microarray gene expression

dataset

Acute Leukemia Dataset (72× 7219)
Training Test Total

AML 11 14 25
B-Cell ALL 19 19 38
T-Cell ALL 8 1 9

Total 38 34 72
# Genes 7129

2) Colon Cancer Dataset: Microarray gene expression
values for 22 normal and 40 colon cancer tissues are
collected. Each sample has 6500 genes which are obtained
from microarray experiments. The colon cancer dataset [1]
collected 2000 genes with the highest minimal intensity
across the 62 tissues. By verifying parameters of stratified
5-fold cross validation, we report the number of genes and
average testing accuracy over the accuracies of stratified 5-
fold data in Table IV.

3) Multiple Myeloma Dataset: Multiple myeloma dataset
is available at: http://myeloma.uams.edu/research/, and pro-
cessed by David Page and his colleagues [21]. Multiple
myeloma is characterized by malignant plasma cells that
reproduce uncontrollably. The Plasma cells are a type of
white blood cell that produces and secretes antigen-specific
antibodies. Multiple myeloma plasma cells tend to localize
within the bone marrow, although they may be found in other
parts of the body as well. In the multiple myeloma dataset,
there are 74 myeloma patients and 31 healthy donors. Each
sample has 7008 genes obtained from the patients using
plasma cells. There are two measurements in each one of
the 7008 genes which are called the average difference (AD)
and absolute call (AC) respectively. The AD is a floating
point number, so we do not handle anything to utilize the
classifier which requires an input of real numbers. The AC is
one of three nominal values: A (Absent), M (Marginal) or P
(Present). Thus, each nominal value is mapped into a three
dimensional binary vector. The A, M and P are mapped
into (001), (010) and (001) respectively. The AC feature
space is transformed form a 7008-dimensional space into a
7008 × 3 = 21024 real-valued dimensional space. Clearly,
the AD and AC are combined to a 21024 + 7008 = 28032
real-valued dimensional space. A detailed description of
multiple myeloma dataset can refer to [21]. By verifying
parameters of stratified 10-fold cross validation, we report
the leave-one-out correctness (looc), total running times,
average number of features per fold and the overall number
of different features for NLPSVM [9], LPNewtonSVM [16]
and SLASSO later in Table II.

4) Seven Other Datasets: There are six UCI Machine
Learning Repository [3] datasets: Ionosphere, BUPA Liver,
Pima Indians, Cleveland Heart Problem, Housing, and
WDBC in the comparisons. Another dataset involved is the

Galaxy Dim dataset [19]. By verifying parameters of strati-
fied 10-fold cross validation, Results report the average time,
training/testing accuracy and features over the accuracies of
stratified 10-fold data in Table V.

B. Numerical Results and Comparisons

In the acute leukemia dataset, we reported the numbers
of the selected genes and the misclassified samples in Table
II. The previous results done by [11], [25], [12], [14] are
included for comparison purpose. We also list the results
with LIBLINEAR [8]. For discriminating AML samples
from ALL samples, Guyon [12] and IFFS [14] select 8
genes and 14 genes, respectively, and SLASSO select 8
genes and has 1 misclassified sample. However, NLPSVM
[9] and LPNewtonSVM [16] is not suitable for this situation.
For distinguishing T-Cell ALL samples from B-Cell ALL
samples, Weston [25], the weight score approach, IFFS [14],
NLPSVM [9], LPNewtonSVM [16], and SLASSO select 5
genes, 20 genes, 9 genes, 3 genes, 2 genes, and 4 genes,
respectively. SLASSO has the desirable performance.

Table II
The numerical results of the acute leukemia dataset

Acute Leukemia Dataset (72 × 7129)
(Tested by independent test samples)

Method ALL/AML B-Cell/T-Cell
# Genes Errors # Genes Errors

Golub [11] 50 2 N/A N/A
Weston [25] 20 0 5 0
Guyon [12] 8 0 N/A N/A

Weight Score Approach [14] 10 1 20 0
IFFS [14] 14 0 9 0

LIBLINEAR [8] 12 2 5 0
NLPSVM [9] 4 3 3 0

LPNewtonSVM [16] 3 6 2 0
SLASSO 8 1 4 0

N/A Denotes “Not Available”

In the colon cancer dataset, SLASSO selects 3.8 genes and
has a misclassified sample in stratified 5-fold cross validation
test sets averages. SLASSO has the satisfying result. We
summarized these results in Table III. The previous results
done by [14], [24], [25] and result of LIBLINEAR [8] are
also included.

In the multiple myeloma dataset, We report the leave-one-
out correctness (looc), total running times, average number
of features per fold, and the overall number of different
features used in the 105 folds of testing in Table IV. Best
results is represented in bold. SLASSO has the best looc
performance.

On seven other datasets, we report training and testing
correctness and number of features which are all averages
over ten folds in Table V. The column Time is the total
time over ten folds. Best results are in bold. For the feature
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Table III
The numerical results of the colon cancer dataset

Colon Cancer Dataset (62×2000)
(Tested by stratified 5-fold cross validation)

Method Tumor/Normal
# Genes Errors

Weston [25] 15 1.5
Guyon [12] 8 3
Weston [24] 20 1.7

Weight Score Approach [14] 20 1.6
IFFS [14] 5 1.4

LIBLINEAR [8] 21.2 1.8
NLPSVM [9] 5.8 2

LPNewtonSVM [16] 2.4 2.6
SLASSO 3.8 1

Table IV
The numerical results of the Multiple Myeloma dataset

Dataset NLPSVM LPNewtonSVM SLASSO
m × n looc looc looc

Time (Sec.) Time (Sec.) Time (Sec.)
Avg. Features Avg. Features Avg. Features

Overall Features Overall Features Overall Features
Myeloma

105×28032 87.62 % 85.71 % 100 %
244.22 232.95 545.31
11.686 3.143 6.981

17 4 8

suppression, SLASSO performs well with slightly better
accuracy.

VI. CONCLUSION

This paper proposes Smooth Least Absolute Shrinkage
and Selection Operator (SLASSO) to solve 1-norm penalty
problems and the results showed that it can select features
automatically and effectively. Inspired by SSVM1, this study
uses the same smooth methodology to solve LASSO for
classification. When it encounters a problem with large num-
bers of features, this study applies the Sherman-Morrison-
Woodbury identity [10] to decrease the training time. In
the classification testing of SLASSO, this study compares
SLASSO with other approaches of “wrapper” and “filter”
models for feature selection. Results showed that SLASSO
has slightly better accuracy than other approaches and per-
forms well in feature suppression.
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